国产chinesehdxxxx老太婆,办公室玩弄爆乳女秘hd,扒开腿狂躁女人爽出白浆 ,丁香婷婷激情俺也去俺来也,ww国产内射精品后入国产

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習在計算機視覺上的四大應用

如意 ? 來源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學習計算機視覺上的應用

計算機視覺中比較成功的深度學習的應用,包括人臉識別,圖像問答,物體檢測,物體跟蹤。

人臉識別:

這里說人臉識別中的人臉比對,即得到一張人臉,與數據庫里的人臉進行比對;或同時給兩張人臉,判斷是不是同一個人。

這方面比較超前的是湯曉鷗教授,他們提出的DeepID算法在LWF上做得比較好。他們也是用卷積神經網絡,但在做比對時,兩張人臉分別提取了不同位置特征,然后再進行互相比對,得到最后的比對結果。最新的DeepID-3算法,在LWF達到了99.53%準確度,與肉眼識別結果相差無幾。

圖片問答問題:

這是2014年左右興起的課題,即給張圖片同時問個問題,然后讓計算機回答。比如有一個辦公室靠海的圖片,然后問“桌子后面有什么”,神經網絡輸出應該是“椅子和窗戶”。

深度學習在計算機視覺上的四大應用

這一應用引入了LSTM網絡,這是一個專門設計出來具有一定記憶能力的神經單元。特點是,會把某一個時刻的輸出當作下一個時刻的輸入??梢哉J為它比較適合語言等,有時間序列關系的場景。因為我們在讀一篇文章和句子的時候,對句子后面的理解是基于前面對詞語的記憶。

圖像問答問題是基于卷積神經網絡和LSTM單元的結合,來實現(xiàn)圖像問答。LSTM輸出就應該是想要的答案,而輸入的就是上一個時刻的輸入,以及圖像的特征,及問句的每個詞語。

物體檢測問題:

① Region CNN

深度學習在物體檢測方面也取得了非常好的成果。2014年的Region CNN算法,基本思想是首先用一個非深度的方法,在圖像中提取可能是物體的圖形塊,然后深度學習算法根據這些圖像塊,判斷屬性和一個具體物體的位置。

深度學習在計算機視覺上的四大應用

為什么要用非深度的方法先提取可能的圖像塊?因為在做物體檢測的時候,如果你用掃描窗的方法進行物體監(jiān)測,要考慮到掃描窗大小的不一樣,長寬比和位置不一樣,如果每一個圖像塊都要過一遍深度網絡的話,這種時間是你無法接受的。

所以用了一個折中的方法,叫Selective Search。先把完全不可能是物體的圖像塊去除,只剩2000左右的圖像塊放到深度網絡里面判斷。那么取得的成績是AP是58.5,比以往幾乎翻了一倍。有一點不盡如人意的是,region CNN的速度非常慢,需要10到45秒處理一張圖片。

② Faster R-CNN方法

而且我在去年NIPS上,我們看到的有Faster R-CNN方法,一個超級加速版R-CNN方法。它的速度達到了每秒七幀,即一秒鐘可以處理七張圖片。技巧在于,不是用圖像塊來判斷是物體還是背景,而把整張圖像一起扔進深度網絡里,讓深度網絡自行判斷哪里有物體,物體的方塊在哪里,種類是什么?

經過深度網絡運算的次數從原來的2000次降到一次,速度大大提高了。

Faster R-CNN提出了讓深度學習自己生成可能的物體塊,再用同樣深度網絡來判斷物體塊是否是背景?同時進行分類,還要把邊界和給估計出來。

Faster R-CNN可以做到又快又好,在VOC2007上檢測AP達到73.2,速度也提高了兩三百倍。

③ YOLO

去年FACEBOOK提出來的YOLO網絡,也是進行物體檢測,最快達到每秒鐘155幀,達到了完全實時。它讓一整張圖像進入到神經網絡,讓神經網絡自己判斷這物體可能在哪里,可能是什么。但它縮減了可能圖像塊的個數,從原來Faster R-CNN的2000多個縮減縮減到了98個。

同時取消了Faster R-CNN里面的RPN結構,代替Selective Search結構。YOLO里面沒有RPN這一步,而是直接預測物體的種類和位置。

YOLO的代價就是精度下降,在155幀的速度下精度只有52.7,45幀每秒時的精度是63.4。

④ SSD

在arXiv上出現(xiàn)的最新算法叫Single Shot MultiBox Detector,即SSD。

它是YOLO的超級改進版,吸取了YOLO的精度下降的教訓,同時保留速度快的特點。它能達到58幀每秒,精度有72.1。速度超過Faster R-CNN 有8倍,但達到類似的精度。

物體跟蹤

所謂跟蹤,就是在視頻里面第一幀時鎖定感興趣的物體,讓計算機跟著走,不管怎么旋轉晃動,甚至躲在樹叢后面也要跟蹤。

深度學習在計算機視覺上的四大應用

深度學習對跟蹤問題有很顯著的效果。是第一在線用深度學習進行跟蹤的文章,當時超過了其它所有的淺層算法。

今年有越來越多深度學習跟蹤算法提出。去年十二月ICCV 2015上面,馬超提出的Hierarchical Convolutional Feature算法,在數據上達到最新的記錄。它不是在線更新一個深度學習網絡,而是用一個大網絡進行預訓練,然后讓大網絡知道什么是物體什么不是物體。

將大網絡放在跟蹤視頻上面,然后再分析網絡在視頻上產生的不同特征,用比較成熟的淺層跟蹤算法來進行跟蹤,這樣利用了深度學習特征學習比較好的好處,同時又利用了淺層方法速度較快的優(yōu)點。效果是每秒鐘10幀,同時精度破了記錄。

最新的跟蹤成果是基于Hierarchical Convolutional Feature,由一個韓國的科研組提出的MDnet。它集合了前面兩種深度算法的集大成,首先離線的時候有學習,學習的不是一般的物體檢測,也不是ImageNet,學習的是跟蹤視頻,然后在學習視頻結束后,在真正在使用網絡的時候更新網絡的一部分。這樣既在離線的時候得到了大量的訓練,在線的時候又能夠很靈活改變自己的網絡。

基于嵌入式系統(tǒng)的深度學習

回到ADAS問題(慧眼科技的主業(yè)),它完全可以用深度學習算法,但對硬件平臺有比較高的要求。在汽車上不太可能把一臺電腦放上去,因為功率是個問題,很難被市場所接受。

現(xiàn)在的深度學習計算主要是在云端進行,前端拍攝照片,傳給后端的云平臺處理。但對于ADAS而言,無法接受長時間的數據傳輸的,或許發(fā)生事故后,云端的數據還沒傳回來。

那是否可以考慮NVIDIA推出的嵌入式平臺?NVIDIA推出的嵌入式平臺,其運算能力遠遠強過了所有主流的嵌入式平臺,運算能力接近主流的頂級CPU,如臺式機的i7。那么慧眼科技在做工作就是要使得深度學習算法,在嵌入式平臺有限的資源情況下能夠達到實時效果,而且精度幾乎沒有減少。

具體做法是,首先對網絡進行縮減,可能是對網絡的結構縮減,由于識別場景不同,也要進行相應的功能性縮減;另外要用最快的深度檢測算法,結合最快的深度跟蹤算法,同時自己研發(fā)出一些場景分析算法。三者結合在一起,目的是減少運算量,減少檢測空間的大小。在這種情況下,在有限資源上實現(xiàn)了使用深度學習算法,但精度減少的非常少。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 計算機
    +關注

    關注

    19

    文章

    7663

    瀏覽量

    90834
  • 人臉識別
    +關注

    關注

    77

    文章

    4089

    瀏覽量

    84323
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122806
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    等多種應用中。然而,這些計算機視覺應用可能很難實現(xiàn)最優(yōu)化的延遲性能和處理速度,特別是在內存大小、電池容量和處理能力有限的移動設備難度更高。 而 Arm KleidiCV 便能在其中大顯身手。該開源庫利用了最新 Arm CPU
    的頭像 發(fā)表于 02-24 10:15 ?571次閱讀

    AR和VR中的計算機視覺

    ):計算機視覺引領混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1584次閱讀
    AR和VR中的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    工業(yè)中使用哪種計算機

    工業(yè)環(huán)境中,工控機被廣泛使用。這些計算機的設計可承受極端溫度、灰塵和振動等惡劣條件。它們比標準消費類計算機更耐用、更可靠。工業(yè)計算機可控制機器、監(jiān)控流程并實時收集數據。其堅固的結構和
    的頭像 發(fā)表于 11-29 14:07 ?716次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計算機</b>?

    量子計算機與普通計算機工作原理的區(qū)別

    超越世界最強大的超級計算機,完成以前不可想象的任務!這意味著量子計算機可能會徹底改變我們的生活。 本文中,我們將先了解普通計算機的工作原
    的頭像 發(fā)表于 11-24 11:00 ?1506次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區(qū)別

    【小白入門必看】一文讀懂深度學習計算機視覺技術及學習路線

    一、什么是計算機視覺?計算機視覺,其實就是教機器怎么像我們人一樣,用攝像頭看看周圍的世界,然后理解它。比如說,它能認出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉換
    的頭像 發(fā)表于 10-31 17:00 ?1247次閱讀
    【小白入門必看】一文讀懂<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術及<b class='flag-5'>學習</b>路線

    計算機接口位于什么之間

    計算機接口是計算機硬件和軟件之間、計算機與外部設備之間以及計算機各部件之間傳輸數據、控制信息和狀態(tài)信息的硬件設備和軟件程序。它在計算機系統(tǒng)中
    的頭像 發(fā)表于 10-14 14:02 ?1325次閱讀

    晶體管計算機和電子管計算機有什么區(qū)別

    晶體管計算機和電子管計算機作為計算機發(fā)展史上的兩個重要階段,它們多個方面存在顯著的區(qū)別。以下是對這兩類計算機
    的頭像 發(fā)表于 08-23 15:28 ?3624次閱讀

    如何利用ARMxy ARM嵌入式計算機的NPU進行深度學習模型的訓練和優(yōu)化?

    正文開始前,我們先大致了解鋇錸的ARMxy ARM嵌入式計算機,再來說說我們如何利用ARMxy ARM嵌入式計算機的NPU來實現(xiàn)深度學習
    的頭像 發(fā)表于 08-20 13:43 ?767次閱讀
    如何利用ARMxy ARM嵌入式<b class='flag-5'>計算機</b>的NPU進行<b class='flag-5'>深度</b><b class='flag-5'>學習</b>模型的訓練和優(yōu)化?

    ARMxy ARM嵌入式計算機搭載 1 TOPS NPU支持深度學習

    ARMxy ARM嵌入式計算機BL410系列內置了1TOPS算力 NPU,它每秒可以執(zhí)行高達一萬億次的浮點運算,這為復雜的圖像處理和深度學習任務提供了充足的計算資源。在產品缺陷檢測領域
    的頭像 發(fā)表于 08-20 11:53 ?866次閱讀
    ARMxy ARM嵌入式<b class='flag-5'>計算機</b>搭載 1 TOPS NPU支持<b class='flag-5'>深度</b><b class='flag-5'>學習</b>

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2056次閱讀

    圖像處理器與計算機視覺有什么關系和區(qū)別

    圖像處理器與計算機視覺是兩個圖像處理領域緊密相連但又有所區(qū)別的概念。它們之間的關系和區(qū)別可以從多個維度進行探討。
    的頭像 發(fā)表于 08-14 09:36 ?1050次閱讀

    計算機視覺中的圖像融合

    許多計算機視覺應用中(例如機器人運動和醫(yī)學成像),需要將多個圖像的相關信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準確性和數據質量。多視圖融合可以提高圖像分辨率,并恢復場景的三維表示
    的頭像 發(fā)表于 08-01 08:28 ?1143次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的圖像融合

    地平線科研論文入選國際計算機視覺頂會ECCV 2024

    近日,地平線兩篇論文入選國際計算機視覺頂會ECCV 2024,自動駕駛算法技術再有新突破。
    的頭像 發(fā)表于 07-27 11:10 ?1467次閱讀
    地平線科研論文入選國際<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>頂會ECCV 2024

    DRAM計算機中的應用

    DRAM(Dynamic Random Access Memory,動態(tài)隨機存取存儲器)計算機系統(tǒng)中扮演著至關重要的角色。它是一種半導體存儲器,用于存儲和快速訪問數據,是計算機主內存的主要組成部分。以下是對DRAM
    的頭像 發(fā)表于 07-24 17:04 ?3022次閱讀

    計算機視覺技術的AI算法模型

    計算機視覺技術作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標,計算機視覺技術依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1820次閱讀