国产chinesehdxxxx老太婆,办公室玩弄爆乳女秘hd,扒开腿狂躁女人爽出白浆 ,丁香婷婷激情俺也去俺来也,ww国产内射精品后入国产

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

如何在英特爾獨立顯卡上訓練TensorFlow模型的全流程

英特爾物聯(lián)網(wǎng) ? 來源:英特爾物聯(lián)網(wǎng) ? 2023-01-12 15:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文將基于蝰蛇峽谷(Serpent Canyon) 詳細介紹如何在英特爾獨立顯卡上訓練 TensorFlow 模型的全流程。

1.1 英特爾 銳炫 獨立顯卡簡介

38200bf4-9244-11ed-bfe3-dac502259ad0.png

英特爾 銳炫 顯卡基于 Xe-HPG 微架構(gòu),Xe HPG GPU 中的每個 Xe 內(nèi)核都配置了一組 256 位矢量引擎,旨在加速傳統(tǒng)圖形和計算工作負載,以及新的 1024 位矩陣引擎或 Xe 矩陣擴展,旨在加速人工智能工作負載。

1.2 蝰蛇峽谷簡介

389abb60-9244-11ed-bfe3-dac502259ad0.png

蝰蛇峽谷(Serpent Canyon) 是一款性能強勁,并且體積小巧的高性能迷你主機,搭載全新一代混合架構(gòu)的第 12 代智能英特爾 酷睿 處理器,并且內(nèi)置了英特爾 銳炫 A770M 獨立顯卡

搭建訓練 TensorFlow 模型的開發(fā)環(huán)境

Windows 版本要求

訓練 TensorFlow 所依賴的軟件包 TensorFlow-DirectML-Plugin 包要求:

Windows 10的版本≥1709

Windows 11的版本≥21H2

用“Windows logo 鍵+ R鍵”啟動“運行”窗口,然后輸入命令“winver”可以查得Windows版本。

38cefb50-9244-11ed-bfe3-dac502259ad0.png

下載并安裝最新的英特爾顯卡驅(qū)動

到英特爾官網(wǎng)下載并安裝最新的英特爾顯卡驅(qū)動。驅(qū)動下載鏈接:

https://www.intel.cn/content/www/cn/zh/download/726609/intel-arc-iris-xe-graphics-whql-windows.html

下載并安裝Anaconda

下載并安裝 Python 虛擬環(huán)境和軟件包管理工具Anaconda:

https://www.anaconda.com/

安裝完畢后,用下面的命令創(chuàng)建并激活虛擬環(huán)境tf2_a770:

conda create --name tf2_a770 python=3.9
conda activate tf2_a770

向右滑動查看完整代碼

安裝TensorFlow2

在虛擬環(huán)境 tf2_a770 中安裝 TensorFlow 2.10。需要注意的是:tensorflow-directml-plugin軟件包當前只支持TensorFlow 2.10。

pip install tensorflow-cpu==2.10

向右滑動查看完整代碼

安裝 tensorflow-directml-plugin

在虛擬環(huán)境 tf2_a770 中安裝 tensorflow-directml-plugin,這是一個在 Windows 平臺上的機器學習訓練加速軟件包。

 // @brief 加載推理數(shù)據(jù)
    // @param input_node_name 輸入節(jié)點名
    // @param input_data 輸入數(shù)據(jù)數(shù)組
    public void load_input_data(string input_node_name, float[] input_data) {
      ptr = NativeMethods.load_input_data(ptr, input_node_name, ref input_data[0]);
    }
    // @brief 加載圖片推理數(shù)據(jù)
    // @param input_node_name 輸入節(jié)點名
    // @param image_data 圖片矩陣
    // @param image_size 圖片矩陣長度
    public void load_input_data(string input_node_name, byte[] image_data, ulong image_size, int type) {
      ptr = NativeMethods.load_image_input_data(ptr, input_node_name, ref image_data[0], image_size, type);
    }

向右滑動查看完整代碼

到此,在 Windows 平臺上用英特爾獨立顯卡訓練 TensorFlow 模型的開發(fā)環(huán)境配置完畢

在英特爾獨立顯卡上訓練 TensorFlow 模型

下載并解壓 flower 數(shù)據(jù)集

用下載器(例如,迅雷)下載并解壓 flower 數(shù)據(jù)集,下載鏈接:

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

38e7ba50-9244-11ed-bfe3-dac502259ad0.png

下載訓練代碼啟動訓練

請下載 tf2_training_on_A770.py 并放入 flower_photos 同一個文件夾下運行。鏈接:

https://gitee.com/ppov-nuc/training_on_intel_GPU/blob/main/tf2_training_on_A770.py

from pathlib import Path
import tensorflow as tf
data_dir = Path("flower_photos")
image_count = len(list(data_dir.glob('*/*.jpg')))
print("Number of image files:", image_count)
# 導入Flower數(shù)據(jù)集
train_ds = tf.keras.utils.image_dataset_from_directory(data_dir, validation_split=0.2,
 subset="training", seed=123, image_size=(180, 180), batch_size=32)
val_ds = tf.keras.utils.image_dataset_from_directory(data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(180, 180), batch_size=32)
# 啟動預取和數(shù)據(jù)緩存
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=tf.data.AUTOTUNE)
# 創(chuàng)建模型
model = tf.keras.Sequential([
 tf.keras.layers.Rescaling(1./255),
 tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu'),
 tf.keras.layers.MaxPooling2D(),
 tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'),
 tf.keras.layers.MaxPooling2D(),
 tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'),
 tf.keras.layers.MaxPooling2D(),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(5)
])
# 編譯模型
model.compile(optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 metrics=['accuracy'])
#訓練模型
model.fit(train_ds,validation_data=val_ds,epochs=20)

向右滑動查看完整代碼

390bbbd0-9244-11ed-bfe3-dac502259ad0.png

總結(jié)

英特爾獨立顯卡支持 TensorFlow 模型訓練。下一篇文章,我們將介紹在英特爾獨立顯卡上訓練 PyTorch 模型。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英特爾
    +關注

    關注

    61

    文章

    10193

    瀏覽量

    174638
  • 模型
    +關注

    關注

    1

    文章

    3517

    瀏覽量

    50386
  • tensorflow
    +關注

    關注

    13

    文章

    330

    瀏覽量

    61168

原文標題:在英特爾獨立顯卡上訓練TensorFlow模型 | 開發(fā)者實戰(zhàn)

文章出處:【微信號:英特爾物聯(lián)網(wǎng),微信公眾號:英特爾物聯(lián)網(wǎng)】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    請問如何在imx8mplus上部署和運行YOLOv5訓練模型?

    。我在 yo tflite 中轉(zhuǎn)換模型并嘗試在 tensorflow 腳本運行模型,但它不起作用。 如何在 imx8mplus
    發(fā)表于 03-25 07:23

    請問OpenVINO?工具套件英特爾?Distribution是否與Windows? 10物聯(lián)網(wǎng)企業(yè)版兼容?

    無法在基于 Windows? 10 物聯(lián)網(wǎng)企業(yè)版的目標系統(tǒng)使用 英特爾? Distribution OpenVINO? 2021* 版本推斷模型
    發(fā)表于 03-05 08:32

    英特爾?獨立顯卡與OpenVINO?工具套件結(jié)合使用時,無法運行推理怎么解決?

    使用英特爾?獨立顯卡與OpenVINO?工具套件時無法運行推理
    發(fā)表于 03-05 06:56

    用PaddleNLP在4060單卡實踐大模型訓練技術(shù)

    手把手教您如何在單張消費級顯卡,利用PaddleNLP實踐OpenAI的GPT-2模型的預訓練。GPT-2的預
    的頭像 發(fā)表于 02-19 16:10 ?988次閱讀
    用PaddleNLP在4060單卡<b class='flag-5'>上</b>實踐大<b class='flag-5'>模型</b>預<b class='flag-5'>訓練</b>技術(shù)

    英特爾CEO霍爾索斯于CES 2025重申獨立顯卡市場戰(zhàn)略

    近日,在CES 2025的主題演講中,英特爾新任聯(lián)席首席執(zhí)行官米歇爾-約翰斯頓-霍爾索斯向與會者強調(diào):“獨立顯卡市場對我們至關重要,我們將持續(xù)在該領域進行戰(zhàn)略投資?!边@一表態(tài)無疑是對外界關于
    的頭像 發(fā)表于 01-08 14:31 ?583次閱讀

    英特爾2025上半年將推24GB顯存銳炫B580顯卡

    近日,據(jù)最新報道,英特爾計劃在2025年上半年推出其全新獨立顯卡產(chǎn)品——銳炫B580 24GB。這款顯卡將采用英特爾的“Battlemage
    的頭像 發(fā)表于 01-03 10:46 ?1817次閱讀

    使用英特爾AI PC為YOLO模型訓練加速

    之后,情況有了新的變化,PyTorch2.5正式開始支持英特爾顯卡,也就是說,此后我們能夠借助英特爾 銳炫 顯卡來進行模型
    的頭像 發(fā)表于 12-09 16:14 ?1576次閱讀
    使用<b class='flag-5'>英特爾</b>AI PC為YOLO<b class='flag-5'>模型</b><b class='flag-5'>訓練</b>加速

    英特爾推出全新英特爾銳炫B系列顯卡

    英特爾銳炫B580和B570 GPU以卓越價值為時新游戲帶來超凡表現(xiàn)。 ? > 今日,英特爾發(fā)布全新英特爾銳炫 B系列顯卡(代號Battlemage)。
    的頭像 發(fā)表于 12-07 10:16 ?1422次閱讀
    <b class='flag-5'>英特爾</b>推出全新<b class='flag-5'>英特爾</b>銳炫B系列<b class='flag-5'>顯卡</b>

    英特爾聯(lián)合中科創(chuàng)達構(gòu)建下一代智能座艙平臺

    近日,英特爾 AI 座艙暨車載獨立顯卡發(fā)布會在深圳盛大舉行。英特爾震撼發(fā)布其首款車載獨立顯卡 d
    的頭像 發(fā)表于 11-17 11:11 ?1072次閱讀

    使用PyTorch在英特爾獨立顯卡訓練模型

    《PyTorch 2.5重磅更新:性能優(yōu)化+新特性》中的一個新特性就是:正式支持在英特爾獨立顯卡訓練
    的頭像 發(fā)表于 11-01 14:21 ?2041次閱讀
    使用PyTorch在<b class='flag-5'>英特爾</b><b class='flag-5'>獨立</b><b class='flag-5'>顯卡</b><b class='flag-5'>上</b><b class='flag-5'>訓練</b><b class='flag-5'>模型</b>

    英特爾聚焦AI座艙

    英特爾推出首款銳炫車載獨立顯卡(dGPU)和第一代英特爾軟件定義車載SoC系列,滿足當前消費者對汽車內(nèi)部配備更多屏幕、獲得更高清晰度等AI座艙體驗需求。
    的頭像 發(fā)表于 10-30 16:26 ?435次閱讀

    英特爾IT的發(fā)展現(xiàn)狀和創(chuàng)新動向

    AI大模型的爆發(fā),客觀給IT的發(fā)展帶來了巨大的機會。作為把IT發(fā)展上升為戰(zhàn)略高度的英特爾,自然在推動IT發(fā)展中注入了強勁動力。英特爾IT不僅專注于創(chuàng)新、AI和優(yōu)化,以及
    的頭像 發(fā)表于 08-16 15:22 ?949次閱讀

    支持140億參數(shù)AI模型,229TOPS!英特爾重磅發(fā)布第一代車載獨立顯卡

    英特爾院士、英特爾公司副總裁、汽車事業(yè)部總經(jīng)理Jack Weast指出,在今年的CES,英特爾發(fā)布了第一代AI增強型軟件定義車載SoC。8月8日,
    的頭像 發(fā)表于 08-12 09:07 ?1.4w次閱讀
    支持140億參數(shù)AI<b class='flag-5'>模型</b>,229TOPS!<b class='flag-5'>英特爾</b>重磅發(fā)布第一代車載<b class='flag-5'>獨立</b><b class='flag-5'>顯卡</b>

    英特爾發(fā)布第一代車載銳炫獨立顯卡

    英特爾震撼發(fā)布其第一代車載英特爾銳炫獨立顯卡,標志著智能座艙技術(shù)邁入全新階段。這款顯卡平臺算力高達229TOPS,不僅支持多達8塊
    的頭像 發(fā)表于 08-09 14:54 ?830次閱讀

    英特爾正式推出第一代車載獨立顯卡

    8月8日,英特爾公司正式推出首款英特爾銳炫?車載獨立顯卡(dGPU),以重塑汽車行業(yè)格局。這一全新產(chǎn)品將賦能汽車廠商打造下一代車載體驗,以滿足并超越當前消費者對汽車內(nèi)部配備更多屏幕、獲
    的頭像 發(fā)表于 08-09 09:27 ?8547次閱讀
    <b class='flag-5'>英特爾</b>正式推出第一代車載<b class='flag-5'>獨立</b><b class='flag-5'>顯卡</b>